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We present a simple model for an associating liquid in which polymorphism and density anomaly are
connected. Our model combines a two dimensional lattice gas with particles interacting through a soft core
potential and orientational degrees of freedom represented through thermal “ice variables.” The competition
between the directional attractive forces and the soft core potential leads to a phase diagram in which two
liquid phases and a density anomaly are present. The coexistence line between the low density liquid and the
high density liquid has a positive slope contradicting the surmise that the presence of a density anomaly
implies that the high density liquid is more entropic than the low density liquid.
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Water is one of the most mysterious materials in nature. It
exhibits a number of thermodynamic and dynamic anoma-
lous propertiesf1–3g, such as the maximum as a function of
temperature both in density and in isothermal compressibility
in the liquid phase. It has been proposed some time ago that
these anomalies might be associated with a critical point at
the terminus of a liquid-liquid line in the unstable super-
cooled liquid regionf4g at high pressures, following the sug-
gestion, based on varied experimental dataf5g, of a thermo-
dynamic singularity in supercooled water around 228 K and
at atmospheric pressure. In spite of the limit of 235 K below
which water cannot be found in the liquid phase without
crystallization, two amorphous phases were observed at
much lower temperaturesf6g. There is evidence, although yet
under test, that these two amorphous phases are related to
fluid water f7,8g.

Notwithstanding its confirmation for metastable water, in-
terest in liquid polymorphism arose, and the coexistence of
two liquid phases was uncovered as a possibility for a few
others, both associating and nonassociating liquids. Notable
examples include liquid metalsf9g, silica f10g, phosphorus
f11,12g, and graphitef13g. The relation between liquid poly-
morphism and density anomaly has been a subject of debate
in recent theoretical literaturef14g.

From a microscopic point of view, water anomalies have
been interpreted qualitatively sincef15g, in terms of the pres-
ence of an extensive hydrogen bond network which persists
in the fluid phasef16g. In the case of lattice models, the main
strategy has been to associate the hydrogen bond disorder
with bond f17,18g or site f19,20g Potts states. In the former
case coexistence between two liquid phases may follow from
the presence of an order-disorder transition and a density
anomaly is introducedad hoc by the addition to the free
energy of a volume term proportional to a Potts order param-

eter. In the second case, it may arise from the competition
between occupational and Potts variables introduced through
a dependency of bond strength on local density states.

We propose a description also based on occupational and
orientational degrees of freedom. Inclusion of the orienta-
tional part aims at representing the directionality of the hy-
drogen bonding that favors open structures. For that purpose,
we employ a modification of the thermal versionf21,22g of
the ice modelf23g, so successful in the description of ice
entropy. Competition between the filling up of the lattice and
the formation of an open four-bonded orientational structure
is naturally introduced in terms of the ice bonding variables
and noad hocintroduction of density or bond strength varia-
tions is needed. Our approach is similar to that of some con-
tinuous modelsf24–26g, but the reduction of phase space
imposed by the lattice allows construction of the full phase
diagram from simulations, not always possible for continu-
ous modelsf24g.

We thus consider a lattice gas on a triangular lattice with
sites which may be full or empty. Besides the occupational
variablessi associated to each particlei, there are six other
variablest i

i j pointing to neighboring sitesj : four are the
usual ice bonding arms, two donor, witht i

i j =1, and two
acceptor, witht i

i j =−1, while two additional opposite arms
are taken as inertsnonbondingd, t i

i j = 0, as illustrated in Fig.
1. Therefore each occupied site is allowed to be in one of 18
possible states. Two kinds of interactions are considered: iso-
tropic “van der Waals” and orientational hydrogen bonding.
An energy −v is attributed to each pair of occupied neigh-
boring sites that form a hydrogen bond, while nonbonding
pairs have an energy −v+2u sfor u . 0d, which makes −2u
the energy of a hydrogen bond. The overall model energy is
given by

E = o
si,jd

hs− v + 2udsis j + usis jti
i jt j

jis1 − t j
i jt j

jidj, s1d

wheresi =0,1 are occupation variables andt i
i j =0,61 repre-

sent the arm states described above. Note that each particle
may have six neighbors, but the number of bonds per mol-
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ecule is limited to 4. Foru/v.1/2, the van der Waals forces
become repulsive. As a result, each molecule attracts four
neighbors, if properly oriented, and repels the other two. An
intepretation for this “repulsion” would be that the presence
of the two extra neighbors distorts the electronic orbitals,
thus weakening the hydrogen bonds.

Inspection of the model properties allows the prediction
of two ordered states, as shown in Fig. 2. For low chemical
potential, the soft core repulsion becomes dominant,r
=0.75, and energy “volume” density is given bye=E/V=
−3v /2, whereV is the number of lattice sites. If the chemical
potential is high,r=1, and energy densitye=−3v+2u. At
zero temperature, the low density liquidsLDL d coexists with
the high density liquidsHDLd at chemical potentialm /v=
−6+8u/v, obtained by equating the grand potential density
sor pressured associated with each one of these phases. Simi-
larly the coexistence pressure at zero temperature is given by
p/v=−3+6u/v. Besides these two liquid states, a gas phase
is also found and it coexists with the low density liquid at
chemical potentialm /v=−2 and pressurep=0. The condition
for the presence of the two liquid phases is thereforeu/v
.0.5.

Our model may be interpreted in terms of some sort of
average soft core potential for large hydrogen bond energies.
The LD phase implies average interparticle distance
dLD=rLD

−1/2=2/Î3, whereas for the HD phase we have
dHD=rHD

−1/2=1. The corresponding energies per pair of par-
ticles is −v and −v+2u/3. The hard core is offered by the
lattice. Foru/v.3/2, the shoulder becomes repulsive, mak-
ing the potential soft core.

The model properties for finite temperatures were ob-
tained through Monte Carlo simulations in the grand-
canonical ensemble using the Metropolis algorithm. Particle
insertion and exclusion were tested with transition probabili-
ties given bywsinsertiond=exps−Dfd andwsexclusiond=1 if
Df.0 or wsinsertiond=1 and wsexclusiond=exps+Dfd if
Df,0 with Df;exphbseparticle−md−lns18dj whereeparticle

is the energy of the particle included. Since the empty and
full sites are visited randomly, the factor 18 is required in
order to guarantee detailed balance.

Simulational data were generated both from fixed tem-
perature and fixed chemical potential simulations. Some test
runs were done forL=4, 10, and 20. A detailed study of the
model proerties and the full phase diagrams was undertaken
for an L=10 lattice. The relevant parameter range isu/v
.1/2. For lower values ofv, the LDL disappears. In the
present work we consider the case in which bonding and
nonbonding interactions are symmetric in strength, thus
u/v=1 f27g. Runs were of the order of 106 Monte Carlo
steps.

The three phases obtained at zero temperature are present
for low temperatures, as can be seen in the isotherms of Fig.
3. The model exhibits two first order phase transition lines,
gas-LDL and LDL-HDL, respectively.

In order to obtain the complete phase diagram, including
the two critical points, and to check for density anomalies,
pressure was computed by numerical integration of the
Gibbs Duhem equation,SdT−VdP+Ndm=0, at fixed tem-
perature. Integration was carried out from effective zero den-

FIG. 1. The model orientational state: four bondingsdonor and
receptord and two nonbonding arms.

FIG. 2. High density liquid, HDL, with density 1stopd and low
density liquid, LDL, with density 3/4sbottomd on the triangular
lattice.

FIG. 3. Pressure vs density isotherms for different temperatures.
p/v andr are given in units of lattice space and the temperature is
in units of kB.
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sity, at which pressure is zero, to obtainPsr ,Td isotherms.
The pressure isotherms show that an inversion of the be-

havior of density as a function of temperature takes place at
intermediate pressures, in the LDL phase. At smaller pres-
sures,p/v,1, density decreases with temperature, whereas
at higher pressures,p/v,3, density increases with tempera-
ture. This yields a density anomaly in the higher range of
pressures, which we illustrate in Fig. 4.

Finally, from a large set of temperatures, we build up the
pressure versus temperature coexistence curves shown in
Fig. 5. It shows the gas-LDL and LDL-HDL coexistence
lines ending at two critical pointsC andC8, respectively. The
presence of the second critical point indicates that the HDL
is actually a liquid phasescriticality is not possible between
liquid and solid phasesd. The line of temperature of maxi-
mum densities, TMD, is also shown.

The liquid-liquid coexistence line has a positive inclina-
tion, except at very low temperatures, where the result atT
=0.3 appears to be below the exact result atT=0, obtained
by equating the enthalpy densities. From the Clapeyron con-
dition, sdp/dTducoex=Ds/Dv, the positive slope implies that
within our model and close to the critical point the HDL
phase has lower entropy than the LDL phase. The nonmono-
tonic behavior of the entropic gap between the two phases as
the temperature is varied can be discussed in the following
terms. There are two “sources” of entropy: particle position
and bond distribution. The effect of increasing the tempera-
ture starting fromT=0 is initially similar for both phases:
particles are removed from de HD phase and added to the
LD phase. However, loss of particles occurs at a higher rate
than the addition of particles, while HB density decreases at
a higher rate in the LD phase than in the HD phase. The
entropy gain for the HDL is bigger than the one for the LDL
sthe slope of the coexistence line at this low temperature is
negatived, implying a predominance of the positional entropy
contribution. Beyond a threshold temperature the LDL den-
sity increase steepens, the hydrogen bonds break at similar
rates in both phases and the entropic gain of this phase ex-
ceeds that of the HDL. The slope of the coexistence line
becomes positive. One may conclude that translational and
not orientational entropy commands the sign of the entropy
gap.

Inside each phase, the density anomaly can be related to
the behavior of entropy as a function of pressure. From ther-
modynamics, a negative thermal expansion coefficienta
;s]v /]Tdp implies a positive gradient of entropy with pres-
sure, sinces]v /]Tdp=−s]s/]pdT. This property has been
thoughtf14g to imply that the presence of a density anomaly
would lead to a high entropy high density phase, and there-
fore to a negative slope of the coexistence line, as is true for
the ice fusion line. The present model proves that this as-
sumption is misfounded and that this is not a general behav-
ior.

What we have here is the following: on the low density
side, the thermal expansion coefficient is negative, whereas
on the high density phase it is positive, as can be gathered
from the pressure-density isotherms. The positive slope of
the coexistence line implies, by Clausius-Clapeyron, that the
high density phase is the lower entropy phase. Thus at con-
stant temperature, entropy increases with pressure up to the
coexistence line, drops discontinuously across this line, and
then decreases with pressure, as in any normal liquid. There-
fore the sign of entropy variation across the coexistence line
may be either positive, as in this model, or negative, as in the
fusion of ice, following, inboth cases, the high pressurea
sign.

The model proposed is a truly statistical model which
includes orientational and occupational variables, and guar-
antees the local distribution of hydrogens on molecular
bonds, without the need of increasing the volume artificially
or introducing artificial orientational variablesf29g. In spite
of the absence of an orientational order-disorder transition
f22g, the model presents liquid-liquid coexistence, with posi-
tive inclination in the pressure-temperature plane, accompa-
nied by a line of maximum density, on the low density side,
a feature expected for water. Besides, this study points to the

FIG. 4. Density anomaly for different pressures. The units are
the same as in Fig. 3.

FIG. 5. Phase-diagram showing pressure vs temperature. The
open circles represent the TMD, the filled circlesssquaresd are the
LDL-HDL sgas-LDLd coexistence lines. The coexistence at zero
temperature atp/v=3 is exact.
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fact that the presence of a density anomaly, witha,0, on
the low temperature side, and as a consequence,s]S/]pdT

.0, does notimply a negative slope of the liquid-liquid line,
contrasting with the results for most studies of metastable
liquid-liquid coexistence in models for water, which suggest
a transition line with negative gradientf28g.

The presence of both a density anomaly and two liquid
phases in our model begs the question of which features of
this potential are responsible for such behavior. Averaged
over orientational degrees of freedom, our model can be seen
as some kind of shoulder potential, with the liquid-liquid
coexistence line being present only for a repulsive van der
Waals potential. The same was indeed observed for continu-
ous step pair potentialsf14,30g, for which, however, the den-
sity anomaly is absent. On the other hand, a density anomaly
seems to be associated with smooth soft core potentials
f31,32g, which would be hidden, in our model, in the orien-
tational degrees of freedom.

We have shown that it is possible to incorporate some of
the microscopic properties of true water molecules into a
very simple minimal model. The model presents some of the
expected anomaliessfor density, specific heat, and compress-
ibility d, but of course studies of its hydration properties and
solubility are still needed.

We also address the presence of liquid polymorphism and
its relation to the presence of density anomaly. Our model
presents both of them and proves the possibility of the pres-
ence of both for a high pressure less entropic phase, differ-
ently from what was common belief in the literature.

In summary, we have found that a lattice gas with orien-
tational icelike degrees of freedom can generate a density
anomaly and a liquid-liquid phase boundary with positive
slope.
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